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LETTER TO THE EDITOR 

Coupling and uncoupling in irreversible thermodynamics 

R S Silver 
James Watt Professor of Mechanical Engineering, Department of Mechanical Engineering, 
The University of Glasgow, Glasgow, Scotland 

Received 23 February 1979 

Abstract. For convenience the Letter opens with a summary of the accepted elementary 
treatment of the coupled fluxes and forces in the flow of entropy and mass according to 
Onsager-based irreversible thermodynamics of the steady state. It is then shown that a 
simple transformation entirely consistent with that treatment shows that there also exists a 
set of uncoupled fluxes and forces. The physical significance of the uncoupled set is clear, 
and it is convenient to deal with operationally. Some important questions raised by the 
existence of this alternative set are discussed. 

Symbols 

Go 
Jm 

JS 

K 
M* 
MO 
r 
S* 
so 
T 
40 
A l l ,  etc * 

equilibrium Gibbs thermodynamic potential per unit mass 
mass flux rate 
entropy flux rate 
thermal conductivity 
function defined by equation (18) in terms of S*,  T, and + 
as M* but in terms of So,  T, and + 
resistance 
entropy transport parameter 
equilibrium specific entropy 
temperature 
field potential 
coefficients in standard flux/force equations 
total potential GO+ 40 

We begin with a summary of the accepted elementary treatment of the coupled 
fluxes of entropy and mass according to Onsager-based irreversible thermodynamics. 
Its essentials will be found in such texts as Denbigh (1950), Zemansky (1957) and 
Benson (1967), and more fundamentally in De Groot (1961). 

The rate of entropy generation per unit volume of a continuum maintained in a 
non-equilibrium steady state is stated to be given by 

T div J, = -J, . grad T - J ,  . grad 9. (1) 
The entropy flux J, and the mass flux Jm are each responsive to the two forces grad T 
and grad 9 by the following relations: 

(2) J, = A l l  grad T + A I 2  grad +, J m  = A 2 1  grad T+A22grad +. 
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It i s  also asserted, on the basis of statistical analysis of near-equilibrium conditions, 
that the cross-coupling coefficients are equal, i.e. 

A21 = A12. (3) 
All coefficients A are constants for a given equilibrium condition, being equilibrium 
properties. They are evaluated from the phenomenology of the situation as follows. 

When grad T is zero, i.e. under isothermal conditions, the ratio of entropy flux to 
mass flux is 

(Js/Jm)gradT=o = Aiz /A22 .  (4) 

This is defined as the entropy transport parameter, denoted by a symbol such as S*,  
which is the entropy carried by unit mass as it flows. 

Thus A 12 is found as 

A 1 2  = A22S*, ( 5 )  

A 2 1  = A22S*. (6) 

and from equation (3), also 

The coefficient A Z 2  itself is found by considering the concept of a resistance to mass 
flux also under the isothermal condition. The resistance concept then means 

J,,, = -grad +/r = A 2 2  grad +, (7) 

A 2 2  = - l / r  (8) 

whence 

Finally A l l  is found by considering the concept of thermal conductivity under 
conditions of zero mass flux. When mass flux is zero we have 

(Js)rm=o = J,/T = -(K/T) . grad T. 

grad + = -Az1 grad T/A22  = -S* grad T. 

(9) 

Also when mass flux is zero 

(10) 

Substitution in the general equation for J, gives 

-(K/T).grad T=(All-A12S*)grad T=(A11+S*2/r)grad T. (11) 

Thus we find 

A l l  = -(K/T+S*’/r). (12) 

Thus all four coefficients are evaluated in terms of the concepts S* ,  K and r. This 
procedure for evaluating the four coefficients depends upon: (i) the A being constant, so 
that the values inserted for specific situations can be used for others; (ii) the asserted 
equality A21 = A12.  Without this there would be only three situation equations (4), (7) 
and (9), while there are four unknowns. 

The constancy of each A is justified by the assumption of local equilibrium at each 
point, although the reference body as a whole is in a non-equilibrium steady state. Thus 
S*, r and K are equilibrium properties, constant for a given equilibrium condition. In 
general S*,  although it has the dimensions of specific entropy, is not identical with the 
equilibrium specific entropy SO. It is frequently called the entropy transport parameter, 
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and its existence, with a value differing from So, is predicted by statistical analysis of 
small perturbations near equilibrium. 

This summary of accepted theory and procedure has been given because we wish to 
draw attention to a feature which has unaccountably been neglected. The theory has 
quite correctly tended to emphasise the coupling of the entropy flux and mass flux as 
each being affected by both forces grad T and grad (1,, but in its concern to do this it 
appears to have overlooked the fact that an uncoupled flux affected only by grad T also 
emerges from the same equations. This can be seen readily from equation (2) by 
considering a flux defined by the relation 

J :  = J , - J , S * .  (13) 
We then have immediately from equation (2) 

J :  = ( A l l  -A21S*) grad T+(A12-A22S*) grad (1,. (14) 

But from equation ( 5 )  the coefficient of grad (1, in equation (14) is necessarily zero, 
and from equations (12), (6) and (8), the coefficient of grad T in equation (14) is 
necessarily -K/ T. Thus we have necessarily always 

J :  = -(KIT). grad T. (15) 

It will be recalled that the inclusion of K arose from the assertion that when J ,  is 
zero the entropy flux can be only that due to what is commonly referred to as heat flux. 
The argument leading to equation (15) therefore shows that even when J,,, is not zero 
the quantity J :  can always be regarded as a heat flux. 

There is a still further consequence. Inserting equation (13) into the entropy 
generation equation (l) ,  we have 

(16) 

and A z 2  

(17) 

Thus the conjugate force with J,,, in equation (16) is the same expression as appears 

(18) 

T div J, = -J:  . grad T - J, . (S*  grad T + grad (1,). 

But also from equation (2) with the values which were established for 

J,,, = -(l /r)(S* grad T+grad (1,). 

in equation (17). It follows that if we define the scalar quantity M* such that 

grad M* = S* grad T + grad +, 
the basic equations (1) and (2) can be written as 

T div J, = - J :  . grad T - J,,, . grad M* 

J :  = -(KIT). grad T, J,,, = -grad M*/r.  

Thus by using the flux J :  instead of J, with the conjugate force grad T, and the 
conjugate force grad M* instead of grad (1, with the flux J,, we have the entropy 
generation expressed directly in terms of uncoupled fluxes and forces. It is a simple 
transformation result using the same parameters S*,  K and r, and giving the same value 
for the rate of entropy generation. 

It is difficult to understand why so much emphasis is placed in contemporary 
irreversible thermodynamics on the set of coupled fluxes and forces when such a simple 
transformation to an uncoupled set exists, which is evidently much more convenient to 
deal with operationally. 
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The physical significance of the uncoupled set is perfectly clear. J :  is the total 
entropy flux J, less J,,,S*, which is the entropy transported with the mass flux. It can 
therefore be considered to be 

J :  = Jq /T .  

Jq, as shown by equation (13, is simply heat flux defined in the usual way as 
responsive to temperature gradient only, whether or not a mass flux J,,, is also present. 

Similarly grad M* has a clear physical significance, since (I, is the equilibrium total 
potential, which may be written 

(I, = Go + 40. 
Hence 

grad $ = Vo grad p -So grad T + grad bo. 
Thus 

grad M* = (S* -So) grad T + Vo grad p +grad 40. (23) 

In equation (22) the terms Vogradp+gradq50 are recognisably the usual 
Newtonian forces which would be regarded as driving mass flux against the resistance r, 
i.e. in mechanics alone we should readily write 

J,,, = -( Vo grad p +grad 40)/r, 
which comes from equations (20) and (23) if the difference between S* and So is 
neglected. The inclusion of this difference is the correction which irreversible thermo- 
dynamics gives to simple mechanics. Indeed we might reasonably define for the 
idealised equilibrium situation 

grad MO = Vo grad p +grad q50. (24) 

to which grad M* tends as S” tends to So. 
None of this affects the well-known results of the accepted theory. There is still an 

effective ‘heat’ flux given by J,, ,T(S*-So) additional to Jq, so that the concept of 
T ( S *  -So) as a ‘heat of transport’ can be retained. The pressure/temperature gradient 
relation for the thermomechanical effect, the thermocouple relations, the thermo- 
diffusion phenomena-all of these stay the same. But it would seem desirable that 
much re-examination of the presentation of the theory should occur in the light of the 
uncoupled set of fluxes and forces which are so much more amenable to physical 
conceptualisation and experimental measurement. 

There is indeed a more fundamental question raised. If we took an entirely 
simplistic ‘classical’ view, we should write heat flux Jq and mass flux J,,, in the simple 
‘thermal’ and ‘mechanical’ forms 

(25) Jq = -K grad T, J,,, = -( VO grad p + grad q50)/r. 

Then we could write, again classically, 

Vo grad p = grad GO + SO grad T, 

giving 

J,,, = -(So grad T +grad $ ) / r .  (27) 
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Then defining the total entropy flux J, as 

we should find 

J, = - ( K / T + S i / r )  grad T - ( S o / r )  grad $. 

Then equations (29) and (27) form a pair of the accepted coupled form with equal 
cross-coupling coefficients - S o / r .  Thus equality of cross coefficients in a coupled pair of 
equations has arisen directly from the simple equation (25) and the property relation 
(26)-with no need for appeal to microscopic reversibility. Of course we have the 
incorrect entropy value So instead of the correctly required S*,  but the implication is 
that, while statistical analysis using the theorem of microscopic reversibility may be 
necessary to prove the existence of S* as a property of the near-equilibrium steady 
state, the equality of cross-coupling coefficients is inherent in the conceptual relations of 
the macroscopic properties. 

Naturally since So appears in this simplistic treatment it fails to predict all the effects 
discussed above which depend on the difference S* -So .  But where an effect depends 
on S* alone, this simple treatment in terms of So gives the correct form, although the 
arithmetical value will be incorrect. In retrospect it can be seen that Kelvin’s treatment 
of the thermocouple was of this kind, and this is why he was able to predict the correct 
form of the relations between Seebeck, Peltier and Thomson coefficients. 
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